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AN APPRECIATION OF KOLMOGOROV'S 1933 PAPER
by M.A. Stephens

Introduction

In 1933, A. N. Kolmogorov (1933a) published a short but landmark
paper in the ltalian Actuarial Journal. He formally defined the empirical
distribution function (EDF), and then enquired how close this would be
to the true distribution F(x) when this is continuous. This leads naturally
to the definition of what has come to be known as the Kolmogorov
statistic (or sometimes the Kolmogorov-Smirnov Statistic) D, and
Kolmogorov not only then demonstrates that the difference between the
EDF and F(x) can be made as small as we please as the sample size n
becomes larger, but also gives a method of calculating the distribution of
D at specified points, for finite n, and uses this to give the asymptotic
distribution of D. The ideas in this paper have tcrmed a platform for a
vast literature, both of interesting and important probability problems
and, also, concerning methods of using the Kolmogorov statistic (and
also other statistics) for testing fit to a distribution. This literature
continues with great strength today, after over 50 years, showing no
signs of diminishing. It is evident that the ideas set in motion by
Kolmogorov are of paramount importance in statistical analysis, and
variations on the probabilistic problems, including modern methods of
treating them, continue to hold attention.

A N. Kol - earl | position in 1933

Andrei Nikolaevich Kolmogorov was born on April 25, 1903. His
father was an agronomist who later died in the aftermath of the
Revolution; his mother died shortly after his birth and he was brought up
by his mother's sister. He was taught by his aunts until he was seven
and then went to a gymnasium in Moscow, to which he later gave much
credit for his early training. He was interested early on in mathematics,
but also in biology and Russian history: he widened these interests
even more in later life to include, for example, methods of education and
poetry. He entered Moscow University in 1920 to study physics and
mathematics, but continued his studies in history. He was a student




during, of course, very difficult times in Russia and in 1922, to augment
his income, he became a schoolteacher while still a student, a position
he held for three years. Nevertheless, he quickly came to the attention
of the Professors at Moscow and, as quickly, began to produce original
resuits in various areas of mathematics - especially in set theory and
Fourier Series. In 1924 he began his lifetime interest in probability
theory and, in 1925, published his first paper in this field with A. Y.
Khinchin. Also in 1925, Kolmogorov graduated from Moscow University
and became a postgraduate student. In the next years he published
fundamental work on laws of large numbers; he regarded such laws, the
study of which began with Bernoulli, as the true beginnings of
probability. By the time he finished as a postgraduate (as in many
European countries at the time, a thesis degree was not deemed
necessary), Kolmogorov had written nearly twenty mathematical papers
and, in June 1929, he joined the Institute of Mathematics and
Mechanics at Moscow University as a faculty member. Two years later
he became Professor and two years more saw him appointed Director of
the Scientific and Research Institute of Mathematics at the University.
Earier, he had begun his fundamental work in measure theory applied to
probability, arising from his concern to have a rigorous axiomatic
foundation for the subject. This first appeared as a paper in 1929 and
then in 1933, the same year as the paper introduced here, he produced
his classical monograph on the Foundations of Probability Theory,
which was to prove so influential to the development of this subject.
Between these two works appeared, in 1933, "On methods of analysis in
Probability Theory", in which he exhibited the relationships between the
theory of probability and the classical analytic methods of theoretical
physics. This too was to become a seminal work in the theory of random
processes.

The paper considered here thus came when Kolmogorov was
thity years old, at the height of his mathematical powers, already
recognized in the Soviet Union, and increasingly becoming so outside
its borders. It is a brilliant combination of his skill with classical
probability arguments combined, as we shall see, with his abilities in
mathematical analysis.




(a)

For the above summary, | am greatly indebted to the review of
Kolmogorov's life by Shiryaev (1989); a biography of Kolmogorov is also
given in Kotz, Johnson and Read (1989).

Summary of the paper,

In this section the contents of the paper will be outlined in more detail
than that given earlier; in subsequent sections we show some of the
ways in which this short article led to advances across the broad fields
of probability and statistics.

Suppose a random sample is given of n values of X; these are
ordered and labelled so that Xy < X2 <...<Xpn. In more modern
notation this would be written X(1) <X(2) <... < X(n), but Kolmogorov's
original will be used here.

The function Fp(x), called the empirical distribution function (EDF) is
defined as

Fn(x) =0 X < Xq;

Fn(x) =% Xk £X< Xk+‘| k=1 12’ ..
n-1;

Fn(x) = 1 Xn €x

Kolmogorov states that we are "almost naturally” led to ask if Fp(x) is
approximately equal to F(x) when n assumes a very large value, and
refers to von Mises' (1931) book which, only two years earlier, had
introduced another statistic to measure how close Fp(x) is to F(x).
Kolmogorov defines

D = supx | Fn(x) = F(x) |

and points out the importance of answering whether Pr (D < €) tends to 1
as n — o, however small the ¢.




(c) He answers the question by proving the following asymptotic result,
expressed as Theorem |.

Let ®(A) = Pr(D < M\[;): then ®(A), as n — « uniformly in A, tends to

o) = S-1)ke-a®?

S=w—00

for any continuous distribution function F(x). Some values of ®(A) are
given for various A; it is pointed out that, for smail A, ®(A) converges
slowly, and the first term of the equivaient formula

O(A) = % zexp[-(2k—1 )2 1t2/(812)]
k=1

then gives excellent results for A < 0.6.

(d) The proof of the Theorem first involves the probability integral
transformation Y = F(X), showing that the distribution of Y is F(y) =y,
0 <y <1, namely the uniform distribution. Also, if Dy is calculated from
the EDF of the Y-values given by Yi=F (X;), i=1, 2,...n, then Dy wil
equal D. Thus the resuit required may be deduced assuming that the
original values have a uniform distribution between 0 and 1, which we
shall write U(0,1).

(e)  The calculations are based on the following argument. Suppose lines
U (y =x+d) and L (y=x ~ d) are drawn parallel to y=F(x)=x. ForD < d,
all the "corners” of Fp(x) must lie between U and L. Suppose Pj is the
probability that Ejx occurs: Eik is the event that Fp(x) lies between U and
L at the values x = j/n, for all j <Kk, while also, at x=k/n, |Fn(k/n) =(k/n)| =
i/n. Clearly P(D < d) is then Pgn. Kolmogorov gives a formula for Pie,
where k*=k+1, as a linear combination of the Pjj for j < k; the coefficients




(f)

in the expression are conditional probabilities Qji(k) that Ejk* occurs
given that Ejx has occurred. These linear equations can be solved for
Pik and, hence, for the required Pgn.

For practical calculations, Kolmogorov defines new quantities Rik
as functions of the Pjx; these enable Rjk* to be expressed as linear
combinations of Rijk, similar to the equations for Pjx+, but with easier
coefficients.

At this point Koimogorov's analytic skills are brought to bear. A Theorem
Il is given, describing the behavior of a random walk with steps Yj which
are integral multiples of a constant .
Suppose Sk = 2Yi , and let S = ie for some.i.
J=

Kolmogorov gives a result for Rjpn, the probability that Sy always lies
between certain bounds, in terms of the Green's function of classical
mathematical physics. The theorem gives the solution to a much more
general problem than that discussed here; it is not proved in detail, but
reference is made to an existing note and to one forthcoming.
(Koimogorov, 1933 b). For the particular problem concerning D, the Y;
are made to be Poisson variables, and Rjp is shown to be the same as
Rin in paragraph (e) above.

The steps € now approach zero, and the random waik becomes "tied
down" to zero at the n-th step, thus becoming the Brownian bridge of
modern notation; application of Theorem |l with appropriate boundaries
gives the asymptotic result given in Theorem |.

Contemporary work and the impact of the paper.

It seems fair to say that Kolmogorov regarded his paper as the
solution of an interesting problem in probability, following his interests of
the time, rather than a paper in statistical methodology. Apart from the
casual remark that Fp(x) should closely estimate F(x) in some sense, no
suggestion is made that Fn(x) should be used for testing that F(x) is the




distribution of x. This was, nevertheless, to become one of the major
outgrowths of the article. Suggestions that Fn(x) should be used for such
a test were in the air at the time. Cramér (1928) had proposed expanding
F(x) in a type of Gram-Charlier series and then using as test statistics
integrals of the type

Ij= J‘{AI(X)}ZdX , where Aj(x) = Fp(x) — ?:j(X),

and f:j(x;, is the expansion of F(x) up to the j-th term. The integral is over
the support of x. The term A;(x) can be thought of as the j-th component
of the difference Fn(x) - F(x), and the approach is reminiscent of
Neyman's work on smooth tests, which appeared a few years later. In
1931, von Misecs (1931) suggested that a test could be based on the
statistic

w2 = nIl(x)[Fn(x) - F(x)]zdx

where A(x) is a suitably chosen weight function. Von Mises suggested
that A(x) should be constant, chosen so that E(w?)= 1, and with this A(x)
von Mises gave a computing formula for 2. The distribution of the
criterion will vary with F(x) under test (and alsc of course with A(x)) even
when this is completely specified; von Mises gave no distribution theory,
but evaluated some variances of the criterion when the true distribution
is uniform or normal.

Several years later, the Soviet mathematician and statistician
Smirnov (1936, 1937) made a significant change in the definition of w2.
This was to write

@2=n j MF(x)[Fn(x) - F(x)]zdF(x)

so that the integral is with respect to F(x) rather than to x. The criterion
now becomes based on the values of Zi=F(X;), which, as was seen
above in paragraph 3(d), will be U(0,1); it will now be distribution-free,
that is, not dependent on the true F(x). This version of the statistic, with
A(F(x)) = 1, has come to be known as W2, the Cramér-von Mises
statistic.




A notable achievement of Smirnov was to find the asymptotic distribution
of W2, in the form of a sum of weighted x12 variables.

Smirnov (1939 a,b) was also interested in Kolmogorov's work; he
extended it to encompass one-sided tests and also two-sample tests.

Let D* = sup{Fn(x) ~ F(x)}. and D~ = syp.{F(x) - Fn(x)};

these will have the same asymptotic distribution, which was found by
Smirnov:
im P(WnD+<A)=1- g-2r?
N—o0

For two samples, suppose Fp(x) and Gm(x) are the EDF's of two
independent random samples of sizes n, m respectively; define
N = mn/(m+n), and let

D*nm = syp{Fn(x) = Gm(x)}, Dn,m = suP{Gm(x) - Fn(x)} and
Dmn = 5YP [Fn(x) = Gm(x)!.

Smirnov shows that the asymptotic distribution of VN Dm,n is the same as
that of VnD given in Kolmogorov's Theorem |.

Smirnov (1939a) also examined Vp()A), the number of crossings of F”(i)
with the lines F(x) % AVn, and showed that as n — oo, P(Vn(A) £ tV n)
converges to

etr)=1-2 3 tlL"_‘Q’l[tm exp {_ (t+2Am +2k)2}]

i m
m=0m.dt 2

He also gave a new proof of Kolmogorov's Theorem |, and tabulated the
asymptotic distribution ®(A) in Smirnov (1939b); and in Smirnov (1944)
he found the distribution of VnD+ The table of ®(A) was later
reproduced in English in Smirnov (1948). Statistics of the D+, D—and D
type are often referred to as Kolmogorov-Smirnov statistics.




The war and afterwards,

Thus, over a period of about 10 years, the foundations were laid
by a number of distinguished mathematicians of methods of testing fit to a
distribution based on the EDF. To test the null hypothesis Hg that F(x),
completely specified, is the true distribution of X, the statistics above
may be calculated and referred to the appropriate distribution.

At this point the war intervened and much momentum in this field
was certainly lost. Kolmogorov, himself, became involved in war work
(he worked, for example, on artillery problems), which certainly brought
him into greater contact with statistical analysis, and may account for an
increasing interest in statistics itself. In 1948 he edited and wrote a
preface to the Russian edition of Cramér's M_amg_m_anga]_angds_Q_t
Statistics; he protested the overly theoretical basis of the training of
Soviet statisticians, a lament familiar enough outside the Russian
borders. Perhaps, also, Koimogorov was impressed by Cramér's
opening, which gives great credit to British and American statisticians
for advances in statistics, while admiring France and Russia for their
excellence in probability; at any rate, in that year he spoke at a Tashkent
Conference on Mathematical Statistics, on "Basic problems of
Theoretical Statistics™ and also enlightened the assembied statisticians
on "The real meaning of the Analysis of Variance". This was to be
followed, over the years, by many more contributions to the mainstream
of statistics, while, of course, his other wide interests were maintained.
These came to include, with the passing years, a strong interest in the
teaching of both mathematics and statistics.

In the 1950's there was a surge of interest in Russia in the Kolmogorov-
Smirnov statistics, particularly in the combinatoric problems associated
with crossings and with two-sample statistics. Gnedenko and Korolyuk
(1951) found the exact distributions of D+, n and of Dp n, to compare two
empirical distributions from independent samples both of size n: later
Korolyuk (1955) found exact distribution theory when m is an integral
multiple of n, m=np. By allowing p — « , he deduced the exact
distribution of D+, and also the more difficult distribution of D itself.




Gnedenko and Rvaceva (1952) obtained the joint distribution of D+p p,
and D-npn, and verified the asymptotic joint distribution aiready found by
Smirnov in 1939; further results were given by Gnedenko (1952).
Gnedenko and Mihalevic (1952a,b) discussed the number of crossings,
when one distribution function Fn(x) crosses the other Gm(x). The
interest spread to Hungary and across Asia to China; Renyi (1953)
proposed several variations of Kolmogorov's statistic, such as supy
I{Fn(x)-F(x)}/F(x)I; Chang Li-Chien (1955) examined the ratio of

Fn(x)/F(x), closely related to Renyi's statistics, and Cheng Ping (1958)
gave further results on crossings.

Meantime, in the western world also, EDF statistics were
attracting attention. An elegant paper by Feller (1948) appeared, giving
more accessible proofs of the results of both Kolmogorov and Smirnov:
where Kolmogorov used Green's function to find the asymptotics from the
equations for P(D < c/n), Feller introduced generating functions for the
component probabilities and then examined their limiting forms. He also
gave a theorem on the asymptotic expectation of the number of
crossings Vn(A) of Fp(x) with the boundaries F(x) + AVn. At about the
same time, there were significant advances in methodology. Doob, in
1949, suggested that the asymptotic behaviour of EDF statistics based
on ep(x) = Fp(x) ~F(x) could be found by examining the limiting
behaviour of Vn en(x), @ Gaussian process, and calculating the statistics
from this limiting process. According to Khmaladze (1986), in an article
presenting the 1933 paper in Kolmogorov's collected works,
Kolmogorov himself put forward similar ideas in a Moscow seminar
towards the end of 1948, and Smirnov (1949) wrote a brief paper on the
asymptotics of the Cramér-von Mises statistic. These ideas, those of
Doob made rigorous by Donsker (1952), laid the foundation for a great
deal of later work on the asymptotics of EDF statistics. Anderson and
Darling (1952) used them to examine such statistics and introduced the
statistic A2, for which the weight function in Smirnov's version of @2 is
1/[F(x){1-F(x)}]. This compensates for the fact that en(x) must
necessarily become small in the tails, by essentially dividing by the
variance of en(x), and gives due weight to tail observations.
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These developments demonstrated elegant techniques of
combinatorics and analysis in the field of probability but, apart from some
asymptotic tables, the practical statistician was largely neglected.
However, in the 1950's, other authors were filling the gap. Massey
(1950, 1951a), and Birnbaum and Tingey (1951), using new formulas
and difference equations, gave tables of percentage points and of
probabilities for finite sample size n, for D and D+; these were later
augmented by Miller (1956). Birnbaum (1952), using the original
techniques of Kolmogorov himself, gave complete tables of the
distribution of D, and a table of percentage points for n up to 100. Thus,
at last - nearly twenty years after the statistic was suggested! - practical
formulas and tables were available to make D available to test that F(x)
is a completely specified continuous distribution.

Many years later again, Stephens (1970) used these tables to
derive a modification of D. This is a simple expression in D and n which
gives D*, this is to be compared, for testing purposes, with the
asymptotic points for VnD given by Kolmogorov's Theorem |. The test is
thus made easy to use without extensive tables of ptints for every n.
Stephens (1970) also found similar modifications for D+ and D, for V =
D+ + D- (see Section 7 below) and for the Cramér-von Mises W2,

For two sampies, Massey (1851b) and Drion (1852) gave tables
for Dnn and Massey (1952) for Dm n, mostly for n=mp, where p is an
integer; practical formulas for the calculation of these statistics also
began to appear in the literature. It was also pointed out (Wald and
Wolfowitz (1939), Massey (1950), Birnbaum and Tingey (1951)) that D
can be used to give a confidence interval for F(x), and D+ a one-sided
interval.

At this point all attempt will be abandoned to survey exhaustively
the enormous literature which has grown up on Kolmogorov-Smirnov
statistics and on other EDF statistics; many more properties of D, D+
and D- have been discovered, new methods of computing distributions
have been proposed, and variants of the basic statistics have been
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suggested. Durbin (1973) provides a comprehensive and unifying
account of developments up to that time, with many references;
Niederhausen (1981b) also has references and brings together many of
the computational procedures. A survey of goodness-of-fit tests is in
Kendall and Stuart (1979, Vol. 2, Chap. 30) and another was given by
Sahler (1968).

The probiem of unknown parameters.

Despite the interest of mathematical statisticians, and the
availability of tables, it has taken many years for the Kolmogorov-
Smirmnov statistics, and other EDF statistics, to become part of the regular
arsenal of applied statisticians. No doubt this is because major new
problems are presented if tests are to be made on F(x), which we now
call F(x;8), when F(x;8) is a continuous distribution containing
parameters which are components of the vector 8, and when one or
more of these components must be estimated from the given data set.
For the well-established Pearson X2 test, provided the estimation of
parameters is done correctly — but how often it is not! — the asymptotic x2
distribution on Hg merely changes its degrees of freedom, but for D+, D~
and D, (and for other EDF statistics) the distribution theory will depend
on the particular F(x;0) being tested. This is so even when the unknown
components of 6 are estimated by maximum likelihood or another
efficient method; the distributions, even asymptotic, are now
stochastically much smaller than for the case when F(x;8) is completely
known. For Kolmogorov-Smirnov statistics, they depend asymptotically
on the distribution of the maximum of a Gaussian process with mean
zero, tied down at 0 and 1; even though the covariance can be found,
this distribution remains unknown and the early techniques of
Kolmogorov will not find it. The discovery of the asymptotics of D+, D~
and D, when parameters must be estimated, thus remains a major
theoretical problem in the area of Kolmogorov-Smirnov statistics.

It the unknown components of 0 are only location or scale
parameters, however, the distribution theory of all EDF statistics, even
for finite n, will depend only on the family tested, and not on the true
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values of these parameters, a fact early recognized by David and
Johnson (1948). In these circumstances, Durbin (1973, 1975) has
shown how exact distributions of D+ and D can be calculated for the
exponential distribution F(x;0) = 1 - exp(-x/8), x <0, with unknown scale
0, and has provided points for test purposes; for other distributions,
including the normal, extreme-value, Weibull, and logistic distributions,
several authors have produced Monte Carlo tables. For Cramér -von
Mises statistics, the situation is different; asymptotic distributions can be
found (see, e.g., Darling, 1955, Durbin, 1973, Stephens 1976) and
percentage points for finite n converge rapidly to the asymptotic points.
Also, for some important distributions with shape parameters, for
example, the von Mises and Gamma, the asymptotic points for Cramér-
von Mises statistics do not depend strongly on the true value of the
shape, and a test using the estimated shape can be used (lL.ockhart and
Stephens, 1985 a,b). The tests described above, for parameters known
or unknown. have been collected together in Stephens (1986).

Eurther developments

We conclude this introduction by giving only a brief summary of
some of the more important developments of Kolmogorov-Smirnov tests,
with references either to basic introductory sources or to articles which
themselves survey the particular area and give references.

Kolmogorov-Smirnov tests have been developed for use with
right-or left-censored data (or both): these mostly use D, but some
variations of Renyi-type, such as taking the supremum of Fp(x) - F(x)
over a restricted range of F(x) or of Fp(x) have also been suggested.
Randomly censored data is an important problem, for example, with
survival data: tests with such data often use the Kaplan-Meier estimate
of F(x). Hall and Wellner (1980) give a review and show how
confidence bounds for the distribution can be found. A recent
technique for censored data is given by Guilbaud (1988).

The statistic V = D+ + D- has been proposed (Kuiper, 1960) for
use with data on a circle, because the value of V, in contrast to those of
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D+, D- or D, does not depend on the choice of origin. Of course V can
also be used for data on a line. Pettitt and Stephens (1977) produced
tables for D for the uniform distribution for discrete data, and
Niederhausen (1981a) for a variance-weighted D, similar to A2. A test
for symmetry of a distribution was proposed by Smirnov (1947) and has
since been extended; Gibbons (1983) gives a review of such tests.
Tables for some of the above tests, and further discussion and
references, are in Stephens (1983, 1986). An interesting area for future
work is to provide tests for multivariate distributions.

Statistics closely related to D+, D- and D were proposed by
Pyke (1959). Suppose x;, i=1,...,n are the order statistics for a sample
from the uniform distribution; C+ is max; (x; - i/(n+1)), C- = max; (i/(n+1) -
xi), and C = max (C+,C-). These arise naturally in examining the Poisson
process, or the periodogram in time series analysis: they are discussed
by Durbin (1973).

Power

In terms of power, Kolmogorov-Smirnov tests tend to fall between
the Pearson X2 and the Cramér-von Mises tests. On the one hand, this
might be expected, since X2 loses information in a test for a continuous
distribution by grouping the data into ceils. Kac, Kiefer and Wolfowitz
(1955) showed that if equi-probable ceils are used for X2, and if
A = supx|F1(x) - F(x)] where F1(x) is the true distribution and F(x) the
tested distribution, D requires n4/5 observations compared with n
observations for X2 to attain the same power for a given A, for large n.
Thus in these circumstances, X2 will have asymptotic relative efficiency
equal to zero compared with D. Many Monte Carlo studies have
confirmed this superiority of D over X2 in most situations, especially
with small samples.

On the other hand, Cramér-von Mises statistics might well be
expected to be superior to D, since they make a comparison of Fpn(x)
with F(x) all along the range of x, rather than looking for a marked
difference at one point. If the alternative is directional, that is, if F1(x) -
F(x) is mostly positive or mostly negative, the one-sided D+ or D- can
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be very powerful. Of all the different families of goodness-of-fit statistics,
Cramér-von Mises statistics provide overall powerful tests. (Stephens,
1974: see also Kendall and Stuart (1979) and Stephens (1986) for more
discussion.)

Concluding Remarks,

if the remarks above on power may appear to weaken the appeal of D
and its related statistics, it should nonetheless be emphasized that they
are preferable to the much used X2 statistic. They also have the value
that they can be used, by simply adding a constant to Fn(x), and
subtracting it from Fp(x), to give a confidence interval for F(x) — an
attraction in today's world where graphical display is increasingly
available.

The final assessment of the articie by Kolmogorov must be based not
only on the elegance and power of the paper itself, but also on the
pioneering role it has played in the development of statistics in the
succeeding 50 years and more. It launched seriously the use of the
EDF Fn(x) as an estimator of F(x), to be followed by its use in testing a
given F(x); it was the first article to give a statistic which would not
depend (when the null hypothesis was true) on the distribution F(x)
tested; it was also the first to introduce a statistic whose asymptotic
distribution could be found and easily tabulated. Kolmogorov also gave
the essential technique to find the distribution for finite sampies. More
than 50 years later, interest in Kolmogorov's and other EDF statistics
continues unabated. It is fitting, in conclusion, to note the resurgence of
Fn(x) in the wide use of the bootstrap: this technique, making use of the
power which modern computers provide, is based on the use of Fp(x) to
estimate F(x), just as was proposed by Kolmogorov in 1933.

This article was written to introduce Kolmogorov's paper in a forthcoming
volume on the most influential articles in Statistics, to be edited by
S. Kotz and N.L. Johnson.
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